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The Coupled Damping Coefficients
of a Symmetric Ship

By R. Timmun' and J. N. Newman'

"A study Is made of a floating or submerged body with longitudinal and transverse sym-
metryv"which is moving with constant forward speed and performing small oscillations.
The analysis is quite general in the sense that the shape of tee body and the nature of the
oscillations are unspecified, but it is assumed that the linearized free-surface condition
holds. With this assumption the oscillatory velocity potential is found in terms of an
"unknown Green's function, the existence of which is also assumed. This potential is then
used to show th symmetry properties of the cross-coupling damping coefficients.

A CONTROVEimy has arisen in ship-motion theory re- pute has arisen, which is reviewed in the survey of Voeers
garding the croms-coupling damping coefficients of a (2].
pitching and heaving ship. If the ship is symmetrical An analysis of particular relevance to this discussion is
fore and aft and if it has no forward speed, then from that of Havelock [3], which considers the case of a float-
symmetry the cros-coupling moment due to heave and. ing spheroid with a rigid free-surface condition. Have-
the force due to pitch must both be zero, at least in the lock ansumes that the spheroid is pitching and heaving
linearized solution of the problem. However, if the ship and that there is a constant forward speed or, equiva-
is moving with forward speed, an asymmetry is intro- lently, that there is a uniform flow of the stream. With
duced and cros-coupling results. Hankind [I]$ has em- this model it is found that the two cross-coupling co-
ployed thin-ship theory to show that for a symmetric efficients are of unequal magnitude, and Havelock con-
ship with constant forward speed, the two cros-coupling cudes that equality of the cross-coupling is a consequence
damping coefficients for pitch and heave are equal in of the thin-ship approximation. However, the sum of
magnitude and opposite in sign. However, this con- the two coefficients can be expressed [4] in terms of
clusion has received criticism in several papers and a dis- energy radiated in outgoing surface waves and, if a rigid

free surface is assumed, there can be no waves and there-

'Professor of Applied Mathematics, Deift Technishe H - fore no energy radiation. This reasoning leads to a con-
school, Delft, an oslat Netherlands Ship Model Batsditinniteeel efand Consultant, Nehrad hpMdlBasi, tditowthHavelock's result, for if the sum of the
Wageningen, Netherlands. two cross-coupling coefficients is zero, then they must be

SNaval Architect David Taylor Model Basin, Navy Depart- equal and opposte.
ment Washington, b. C.

a Numbers in brackets designate References at end of paper. The source of this discrepancy lies in the fact that in

.Nomenclature
B -i damping coefficients Ae(s) " zcosn,j) -- cosn,z) (z',y', ') - Cartesian co-ordinates fixed

c forward velocity G(a, 1) - Green's function in body
P(:) equation of the body surface g - gravitational acceleration a - displacement vector of a point
,fl(s) " cs(n, z) - horisontal direc- 1,1, h, , unit vectors on body

tion cosine a - unit normal into body surface - oscillation amplitudes of body
f4(x) - ooen, y) - transverse direc- p - fluid pressure f, ,, " - dummy on-ordinates corre-

tion cosne I time sponding to (x, y, a)
0'8(a) - 8)co a - vertical direction v(x) - velocity vector of steady flow #(x) velocity potential of osclla-

coin field tory flow
x) y eo(o(, s) -, on, )_ (z, ,s) - Cartesian co-ordinates fixed - circular frequency of oscilla-



Havelock's analysis the boundary condition is satisfied symmetry properties of the damping coefficients follow
by taking the oscillatory normal velocity on the spheroid directly. It should be emphasized that we do not ex-
and equating this to the normal velocity of the fluid on plicitly solve either the steady or unsteady potential
the mean position of the spheroid in space. In fact, the problems.
oscillatory disturbance is a small perturbation of The proper representation of the oscillating potential,
the steady flow field, and the boundary condition on the equation (9), is particularly interesting, since it demon-
spheroid must be satisfied on the exact oscillating surface strates the effect of satisfying the boundary condition on
of the body, or else expanded to the mean surface in a sys- the exact (oscillating) surface of the body. The final
tematic manner so as to include the oscillatory flow in- results for the damping coefficients are shown in a
duced on the body surface by its change of position in the matrix, Table 1.
steady-state field. That is, the oscillations of a ship in a Both the analysis and final results are analogous to
moving stream give rise to a small disturbance of the reciprocity studies in aerodynamics [7, 8]. In fact this
steady flow field, and various second-order effects enter analogy was the original motivation for suspecting that
into the unsteady problem as a result of the lower-order the equivalence of the pitch and heave cross-coupling co-
steady field. It can be shown by an extension of Have- efficients did not depend on the thin-ship assumption.
lock's analysis that if the boundary condition is satisfied
on the exact surface of the spheroid, then the cross-con- The Soundmr-Vahu Problem
pling damping coefficients between pitch and heave are in Let (x, y, z) be a Cartesian co-ordinate system, mov-
fact equal in magnitude and opposite in sign. It thus ing through the fluid with constant velocity c, with z ver-
seems plausible that this equivalence holds for any sym- tically upward and x in the direction of forward mo-
metrical ship or body, irrespective of the thin-ship as- tion. In addition we shall employ an oscillatory co-ordi-
sumption. nate system x' = x - aee" where e is an infinitesimal

In order to study this question more generally, the vector, which may depend on x', and the real part is to
present paper treats the problem of an arbitrary floating be taken in expressions involving e"'. The %' co-ordi-
or submerged body with longitudinal and transverse nates are fixed with respect to a body which is defined by
symmetry, which is moving with constant forward speed the equation F(x', y', z') = 0. The velocity of the fluid
and oscillating sinusoidally in any of the six degrees of is represented by the vector
freedom. The only significant assumptions are that the v(x) + e"v()
problem is linear, in the sense that the oscillations are
small and that the disturbance of the free surface due to Thus v is the steady velocity field due to the forward
the forward motion is also small. To be physically motion of the body, in the presence of the free surface,
realistic, the latter assumption implies that the body is and o(x) is the potential of the oscillating velocity vector.
thin, slender, or deeply submerged, or a combination of The function # must satisfy Laplace's equation, the
these, but the analysis and conclusions are equally valid linearized free-surface condition [4]
for the case of a nonslender body with a rigid free-surface
condition.4 ("Shallow" ships, with small draft and -g + w1- + 2ic 2 ý_ = 0 (1)
finite beam, are not included in the present work.) With

these two basic assumptions we show that the sum of the on the undisturbed free surface z - 0, and a suitable
two complementary cross-coupling damping coefficients radiation condition at infinity.
is zero for all pairs of modes of oscillation except for the The boundary condition on the body is
coupling of surge with pitch and roll with sway. Further- DF _F

more, fifteen of the thirty crose-coupling coefficients are 0 D. 6 (v + e•vo). VF
shown to be zero. The same conclusions have been ob- D1 at

tained for a thin ship by Hanaoka [6]. bF bxz' + F by' + F az'
As usual we assume irrotational incompressible flow S- -- ÷ ' T -t a -

and formulate the problem in terms of the velocity po- [1 y* F bx' + F by' bF 6z'
tential. The potential problem is solved in terms of a + (v + e )i ( - -r - + -- Sj
Green's function which is not explicitly known, but the + EZ; h P z a z
existence of this function seems physically plausible and + j ' hF + MF b ' + ha
can probably be proved by recourse to the theory of + +
Fredholm integral equations. The reciprocity properties fbF bx' bF by' bF bz'\'1
of this Green's function are then established and the +-k Q bz + b +• - z' bz A

'The distinction between thin and dender bodies is important. = -- -dg. V.,F + (v + ei'dVO)•
In both cases the beam is small compared to the length but the
thin ship has a small beam-draft ratio an well, whereas the slender [ _ ba he
ship has beam and draft of the same order of magnitude. B V,F-- lei .-v -,F le vF
deepiy submerged we imply that the depth of submergence is suff- /
ciently large that the waves will be small, but not so large that ba
the free surface may be neglected and the fluid considered sa in- -- i _l-._ _ F
finite. Qz
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This condition holds on the actual surfacq of the body i l f
where, from Taylor's theorem O J G(x, v) Ow

v+ (v) .... +-[("5v)vJ,."..e (")+ c((,

The subscript "mean" denotes that the fumiction is to be -())d ()
evaluated on the mean position of the Lody, or with where x is a point on the mean body surface and the in-
x - x'. Thus we obtain the boundary conciition tegration is over this surface, the undisturbed free surface

0 = -iwe"(a.v,,.F) + [v(x') + e"'•" z = 0, and a closing surface at infinity. The Green's
function is any harmonic function of x and k which is

+ e- ie'( .- ,F singular like the potential for a source at the point x - t.-) We shall assume the existence of a Green's function which
satisfies the free-surface condition, the same radiation

j, __a - k e' vF' + 0(,t) condition is 0, and the condition

The steady-state term gives the boundary" condition for = 0 on the body F(t) = 0
6n,n

V.
v(x') . V,,F = 0, (2) As stated in the introduction, the existence of this

Green's function can probably be proven from the theory
and the terms of first order in the small orscillatory func- of Fredholm integral equations, and furthermore seems
tions give the boundary condition for 0, physically plausible since this function can be visualized

as the potential due to a realistic fluid flow; i.e., the
vo.v,,F = iwa.voF - [(a'V)Vlman',-T -Pdisturbance caused by a small pulsating sphere in the

+ v. F presence of the body and the free surface.+ [Vin.... •i by Before proceeding further we must establish the re-
ciprocal properties of this Green's function. Assume that

+ L~ -. ,,F)l G+ and G- are two Green's functions satisfying the con-
-Oz '/J-dition 6G/6nf = 0 on the body and satisfying the free-

or surface conditions

vo-., 6G* ~ -* b' G*
-p"- + -.•G ± :Nx cl

+ ((v )a - (e 'v), .... • ,,F (3) at

In equation (3) and hereafter, all of the t-erms are small, - 0 on r - 0. (6)
of the same order as a or 0. Thus to tl-is order of ap- These two functions correspond physically to the velocity
proximation it is no longer necessary to -distinguish be- potentials of an oscillating source at the point x = 1, in
tween the actual position of the body and its mean the presence of the body and the free surface. The fune-
position, or between the co-ordinates x axid x'. tion G+ corresponds to the case where there is a free-

We now use the vector identity' stream velocity c in the -x-direction and the function
(v.V)a - (eyV)v = v X (e X v) - ay.v + vv-' G- to a flow with velocity c in the +x-direction. Be-

cause of this difference the sign of the third term in (6)
and since v .v = 0 (from incompressibility) and vVF must differ for the two cases.
= 0 [from equation (2)1, we find that From Green's theorem, with x and y two different
vo"vF = iwa.VF + [v X (a X v)].VFw on F = 0 vectors,

Since vF is a vector normal to the bo-ody surface, it G+(x, y) - G-(y, x)
follows that the boundary condition for * on the body
may be written as = - JJ v" [G(x, )VG-(y, )

-- [iko + v X (a X v)] -s (4) - G-(y, t)vG+(x, t)]dV,6n

Thus the effect of the steady flow is -to increase the 1f f G+(x, G-(y, G-(y,
normal oscillating velocity by v X (a > v) neie. 2 J-G
Green's Theorem and the Green's Funcimcn . G+(1' d•)

Now we employ Green's theorem w, J
where the surface integral is over the body, the undis-

'Cf. [91, equation (1.4.13). turbed free surface, and a closure at infinity. The inte-

13



gral on the body vanishes since W:L/bng - 0 and the on the undisturbed free surface, and thus that # satisfies
closure at infinity vanishes from the radiation condition.' the free-surface condition (1). Furthermore, the surface
The integral over the free surface is equal to integral in (5) may be treated in exactly the same manner

a we did in establishing the reciprocity relation between
2-" G + G d-dl the Green's functions, It follows that

O(s) - ' ff G+(,, t)-4(OdS. (8)
I [+ (I0+ 2ic b -.c2.)

2g [t bJeL where the integration is only over the body.
-G-(.'G+ -- 2iw -- c+ ý'+)]dtd- Substituting (4) in (8) we obtain

S= )(,, ()i. + v x (. X v) I.ndS,
-2 G+ JJG- - " ý This is equal to

+ G- (i&G+ + c1- dn T - ff diweG + v X (eX v)GJ
- (VG) X (a X v) ndS

1 £ [0+ (itG- - €s_-) but from Stokes' theorem
2r J ffv X [(a X v)G].dS = jr(a X v)G.dl

+ G- (i.,G+ + 0' dr where the line integral is again over the intersection, if
any, of the body with the undisturbed free surface.

where the line integral is over the boundary or boundaries Once again we invoke the linearized free-surface con-
or the free surface, or the intersection of the free surface dition; if the waves are small, then von the free surface is,
with the closure at infinity and (if any) with the! body. to first order, tangent to the undisturbed plane of the
From the radiation condition the integral over the boun- free surface. Since v is also tangent to the body surface,
dary at infinity vanishes, and if the body is submerged it is tangent to the intersection l, and thus (e X v).dl - 0,
there is no further boundary, with the result that and the line integral vanishes. Thus we find that

G+(., Y) - -(y, x) - 0 ff (i-e - VG X (aX v)[ndS
or or G+(x, ~ G-(t, x) or, since

For a floating body, the beam must be small (i.e., the [TG X (a X v)Jn ((TGy)e - (aV0)vj-n

body is either thin or slender) and thus the line integral - (v.VG)(a.n)
around the waterline is of order it follows that

jrfid = 0 ff(i.G - vvG)(a i)dS, (9)

which is of the same order as the beam. Thus it is con-
sistent with the linearized free-surface condition that, in where the integral is over the body surface. Thus the
all cases, effect of the steady velocity field on the unsteady potential is

e0pressed by Otw factor v TG. Physically this can be
O+(x, •) fi G-(l[, a) (7) thought of as a dipole distribution in the direction of v

That is, the Green's function is reciprocal if the direction (and thus tangent to the body surface) and of strength
of the streaming flow is reversed. This property is well equal to the normal displacement (a.n) times the mag-
known for the Green's function which does not satisfy a nitude of v. The same result has been derived for a thin
boundary condition on the body. ship [4].

We now return to the construction of the velocity
potential from equation (5) substituting the Green's The Forces and Moments
function G+(x, k). From the reciprocal property (7) it Equation (9) holds for any oscillatory displacement
follows that vector a, and is therefore not restricted to rigid body

6G+ bG+ _c W5G+ i0 moions. We now assume that the body is rigid, with
-9W + co+ • + J 2ix -six degrees of freedom. It is convenient to introduce an

indicial notation, where we denote the six oscillatory
GThis consequence of the radiation condition is not physically velocities by

obvious. Some discussion of this point will be found in reference
1101, pap 458. 1, 2 .
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These are, respectively, surge, sway, heave, roll, pitch, the direction of the forward velocity reversed. To dis-
and yaw. We also define the six matrix elements tinguish between these two cases we shall denote the

A (x) = cos(n, x) matrix appropriate to forward motion in the +z-direc-
tion as B0j + and the matrix of the rewerse flow by Bj.

f:(x) = cos(n, y) Then

f3(x) = cos(n, z) B_" •- lm f,(x)(i + v*(x).v,)

f,(x) = y cos (n, 2) - z cos (n, y) _ 2w

fis(x) - z cos (n, x) - x cos (n, z) ff fj(f)(iw - vl(t) .yv)G:(x, 6)dSdS. (14)

fe(x) - z cos (n, y) - y cos (n, x) where Gi(s, k) are the two Green'i functions which we

Then the normal displacement ean at the point r is given introduced before, and which posess the reciprocal
by property

e = U(s) (10) G+(x, t = G-((, x)

.j- We need one further assumption based upon the

and if p is the hydrodynamic pressure, the hydrodynamic linearized free-surface condition. This is that, to first

forces and moments are given by the six expressions order,

F, = -ffpf,(x)dS, (i = 1, 2,... 6) (11) v+(:).) -v-(x)
on the body. This seems consistent with the assumption

The pressure p is, from the linearized form of Bernoulli's of a small disturbance on the free surface, for if the waves
equation, are small, the effect of the free surface on the flow at the

p -p[iweo' + (v.V)e-'V + i/• (v v)] (12) body is small, and thus to first order the steady velocity
on the body is an odd function of the stream velocity c, as

where terms of second order in the oscillatory potential # is the case for a body in a wave-free field.
are neglected. Substituting v- = -v+ and

The integral in (11) must be evaluated on the oscillat- G-(x, t) = G+((, x),
ing surface of the ship, and thus the zero-order term s
s(v'v) must be expanded to it follows that

(V'V)bo= (vv)... B = B Imil ft(s)(i" - v+(X) .V.)
+ e""('V)(½yv') + 0(eO ) 2r JIm

Also if the body intersects the free surface, the oscillatory fi.r)(iw + v+(k -V1 )G+((, s)dSjd3s
change in the surface of integration must be included. ff. I
However, both of these effects are in phase with the dis- or, after interchanging the integralb and the variables of
placement ae'" and will not influence the damping co- integration and comparing the resulting expression with
efficients. (14),

We restrict ourselves then to the damping forces and (14),
moments, which may be reprepented by the imaginary B~r = B11+ (15)
part of the integral (1I), taken over the mean surface of It should be noted that up to this point in the analysis,
the body. Let the damping coefficients be represented no assumption has been made regarding the symmetry of
by the matrix B,,, where the first index denotes the the body. Thus (15) holds for asymmetric bodies and,
direction of the force and the second index the velocity in particular, it follows that the six principal damping co-
component involved. Thus, for example, BA is the heave efficients Bj, are independent of the direction of forward
damping force due to pitching oscillations. The thirty- motion. Of greater practical importance is the fact that

six coefficients are identified by the matrix in Table 1. if there is no forward speed, B1 j+ and By1- must be the

Combining equations (9-12) and taking the imaginary same, and therefore B1 , = Bjj when c = 0. This result

part, we obtain the expressions has also been obtained by Haskind [11] and confirms
the frequent argument based upon strip theory.

B, IM C fi(x)(iw + v(X) .V.) Now we consider the physical relations between B1j+
2B Jws. and B•-, assuming that the ship is symmetrical. For

example, the pitch moment of a symmetrical body due to
f1 (t)(iw - v(().vg)G+(x, t)dSjdS. (13) heave and heave force due to pitch are odd functions of

. the forward velocity, since changing the direction of the

In this form the possibility of symmetry, and the im- flow is equivalent to looking at the body from the op-

portance of the dipole distribution - v V#G are apparent. posite side and changing the sign of rotation about the

In order to establish the symmetry properties of the pitch axis. Examination of all of the coefficients in this

coefficients we consider the same forces and momenta with manner yields the following conclusions:
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Table 1 Matrix of Symmetry Properties of Damping Cross-Coupling Coefficients

Surge Sway Heave Roll Pitch Yaw
j-I ' j-2 j-3 j -4 j=5 j-6

Surge force
i - I Bit hi-0 Bi -Bo -B- 8•u-, 816-0

Sway force
i '- 2 Bit-0 B- B! 0 84 -4Bit B-0 B,- -8Be.

Heave force
i - 3 B,,- -Ba, ,-O0 Bs B,, - 0 BU- -BU fn,=0

Roll moment
i - 4 84 -0 B4 . Bu, no, -0 Bit B46 = 0 B46 - -B.

Pitch moment
i - 5 Hi,, - B, BU =0 Bu - -BI, B.--0 B B6,0

Yaw moment
i -6 n.,-0 Bi,- -8,. Bo-0 Big -8. BHs=0 BR.

1 The six coefficients By, and the nine coefficients the pitch and heave coupling coefficients. Gerritsma has
B,2, Bi,, Bit, Bea, Bee, B41, Bat, Bu, and B, are even functions measured the coefficients Bi, and BU for a Series 60 model.
of the forward velocity c. Since this hull is not longitudinally symmetric, the

2 The twelve coefficients Bi,, Bia, B,,, Bit, Ba, B34, present theory is not strictly valid. Following a sugges-
Ba,, Ba,, Bea, Be,, B.,, and Be, are odd functions of c. tion of Vossers [2], however, we may separate the cross-

3 The nine coefficients B,,, B,, Bis, Bat, B43, Ba, B., coupling coefficients into two parts
B,,, and Be& are all zero by symmetry; i.e., there are no Big - Bi + Bay"
transverse forces or moments due to longitudinal oscilla-
tions. where B,,' is the value of Bi, at zero forward speed and

Combining these conclusions with equation (15) it B," is the difference due to the effects of forward speed.
follows that: From equation (15) it follows that (even for an asym-

4 The sum B,, + By, = 0 for all cross-coupling co- metric body)
efficients except B16 + Be, (su:ge and pitch) and B2, + B,,' = Big'
B42 (roll and sway), %here B,, - B,, = 0.

5 Half of the cross-coupling coefficients are zero If the ship is only slightly asymmetric, the effects of the
(those listed under statement 3 plus their complementary asymmetry on the coefficients B,," will be small and thus,
members). Furthermore this conclusion holds for an approximately,
asymmetric body as well, since statement 3 and equation Bul =M -Bel
(15) are valid without the assumption of longitudinal
symmetry. The experimental results in Fig. 5 of reference [12] do

not confirm this relation exactly, but they do suggest,
especially at the higher frequencies and speeds, that this

Discussion of Results is a meaningful approximation for a slightly asymmetric
The symmetry properties of the damping coefficients ship.

for a symmetrical ship are shown in Table 1. For the Experimental measurements of B36 and B., have been
cross-coupling coefficients it is seen that B,, + B,, = 0 made for a symmetrical hull by Golovato (the results of
except for coupling between pitch and surge, where the pitch experiments are unpublished), who found that
Bs - Be,, and for coupling between roll and s% ay, where these two coefficients were approximately equal and
Bu, B4,. These results are consistent with the con- opposite, with a maximum difference of about 10 per cent
clusions based upon thin-ship theory [I, 4, 5, 6], but the over a fairly wide range of speeds and frequencies.
present derivation is valid for all thirty cross-coupling With regard to the derivation of this theory an im-
damping coefficients and does not require that the ship be portant result is the effect of the steady flow field on the
thin. We have, however, assumed that the waves oscillatory potential. In equation (9) this effect is seen
created by the forward motion are small, and this implies to be a tangential dipole distribution, equal in strength
that the body is either thin, slender, or deeply submerged. to the product of the steady velocity and the normal os-
Nevertheless the analysis and conclusions also hold for cillatory displacement. The consideration of this effect
Havelock's [3] mathematical model of a nonslender body is vital to the present analysis as it is directly responsible
with a rigid free surface, which may correspond physically for the symmetry properties of the cross-coupling co-
to very slow forward speed and a low frequency of efficients. Physically this implies that the problem of an
oscillations, oscillating body in a moving fluid is not the same, even

There does not appear to be sufficient experimental in the linearized sense, as the problem of a fixed body
evidence to support these conclusions completely, but with the same distribution of normal velocity, for there is
the oscillator experiments of Gerritsma [12] and Golovato an additional effect from moving about in the steady
[131 are strongly suggestive of the equivalence between flow field.
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